Table 3. Hydrogen-bonding geometry (Å, °) for (1)

$D - H \cdot \cdot \cdot A$		D—H	H···A	$D \cdot \cdot \cdot A$	D — $\mathbf{H} \cdot \cdot \cdot \mathbf{A}$
C5—H5···O1 ⁱ	(300 K)	1.00 (3)	2.25 (3)	3.048 (4)	136 (2)
	(90 K)	0.97 (3)	2.21 (3)	3.009 (4)	139 (3)
Symmetry cod	le: (i) x	$\frac{1}{2}, \frac{1}{2} - y,$	1 - z.		

Mo $K\alpha$ radiation

Cell parameters from 28

 $0.48 \times 0.40 \times 0.36$ mm

 $\lambda = 0.71073 \text{ Å}$

reflections

 $\mu = 0.133 \text{ mm}^{-1}$

T = 90.0(1) K

Light yellow

 $\theta_{\rm max} = 30.87^{\circ}$

 $h = 0 \rightarrow 17$

 $k=-9\rightarrow 0$

 $l = -20 \rightarrow 0$

2 standard reflections

every 50 reflections

intensity decay: 0.32%

 $\theta = 18 - 23^{\circ}$

Plate

Compound (1) at 90 K

Crystal data

 $C_6H_7N_3O_3$ $M_r = 169.15$ Orthorhombic *Pbca* a = 12.756 (3) Å b = 6.870 (1) Å c = 15.740 (3) Å V = 1379.4 (5) Å³ Z = 8 $D_x = 1.629$ Mg m⁻³ D_m not measured

Data collection

Kuma KM-4 diffractometer ω - θ scans Absorption correction: none 1757 measured reflections 1757 independent reflections 1183 reflections with $l > 2\sigma(l)$

Refinement

 $w = 1/[\sigma^2(F_o^2) + (0.0066P)^2]$ Refinement on F^2 + 6.7646P] $R[F^2 > 2\sigma(F^2)] = 0.058$ where $P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.146$ $(\Delta/\sigma)_{\rm max} < 0.001$ S = 1.153 $\Delta \rho_{\rm max} = 0.423 \ {\rm e} \ {\rm \AA}^{-3}$ 1757 reflections $\Delta \rho_{\rm min} = -0.386 \ {\rm e} \ {\rm \AA}^{-3}$ 137 parameters Extinction correction: none H atoms treated by a Scattering factors from mixture of independent International Tables for and constrained refinement Crystallography (Vol. C)

Table 4. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (1) at 90 K

$$U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a^i a^j \mathbf{a}_i . \mathbf{a}_j$$

	x	У	z	U_{eo}
01	0.37956 (17)	0.2110 (3)	0.51814 (15)	0.0171 (5
N1	0.2860 (2)	0.2321 (4)	0.55015 (16)	0.0130 (5
C2	0.2743 (2)	0.3028 (4)	0.6305 (2)	0.0129 (6
C3	0.1766 (2)	0.3244 (4)	0.6659 (2)	0.0134 (6
C4	0.0887 (2)	0.2740 (4)	0.6184 (2)	0.0117 (6
C5	0.1008 (2)	0.2037 (4)	0.5367 (2)	0.0127 (6
C6	0.2001 (2)	0.1838 (4)	0.5036 (2)	0.0134 (6
N7	-0.0131 (2)	0.3087 (4)	0.65405 (17)	0.0128 (5
N8	-0.0798 (2)	0.1559 (4)	0.65894 (17)	0.0136 (5
09	-0.04386 (18)	-0.0094(3)	0.64919 (15)	0.0169 (5
O10	-0.17175 (17)	0.1924 (4)	0.67684 (15)	0.0184 (5
C11	-0.0585 (3)	0.5049 (5)	0.6559 (2)	0.0160 (6

For both compounds, cell refinement: Kuma Diffraction Software (Kuma, 1997); data reduction: Kuma Diffraction Software; program(s) used to solve structures: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structures: SHELXL97 (Sheldrick, 1997b); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: *SHELXL*97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1027). Services for accessing these data are described at the back of the journal.

References

- Bujak, M., Ejsmont, K., Kyzioł, J. B., Daszkiewicz, Z. & Zaleski, J. (1998). Acta Cryst. C54, 1945–1948.
 Cameron, T. S., Cordes, R. E., Morris, D. G. & Murray, A. M. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 300–302.
 Coppens, P. & Lehman, M. S. (1976). Acta Cryst. B32, 1777–1784.
 Daszkiewicz, Z., Domański, A. & Kyzioł, J. B. (1994). Org. Prep. Proced. Int. 26, 337–341.
 Kuma (1997). Kuma Diffraction Software. Version KM4b8. Kuma Diffraction, Wrocław, Poland.
 Nakai, H., Saito, T. & Yamakawa, M. (1988). Acta Cryst. C44, 533–535.
 Sheldrick, G. M. (1990). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
 Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of
- Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Wang, Y., Blessing, R. H., Ross, F. K. & Coppens, P. (1976). Acta Cryst. B32, 572–578.
- Zaleski, J., Daszkiewicz, Z. & Kyzioł, J. (1999). Acta Cryst. C55, 691-693.

Acta Cryst. (1999). C55, 1295-1297

(1*R*,2*R*,3*R*,3'*R*,4*R*)-3-[(2-Furyl)hydroxymethyl]-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol, a new camphor-based chiral auxiliary

Marcelo Cardoso Branco,^{*a*} Maria Teresa do P. Gambardella,^{*a*} Mario L. A. A. Vasconcellos^{*b*} and Uendel G. Barreiros^{*b*}

^aInstituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, 13560-970 São Carlos SP, Brazil, and ^bNúcleo de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Bloco H, CCS, Ilha do Fundão, 21941-590 Rio de Janeiro RJ, Brazil. E-mail: branco@iqsc.sc.usp.br

(Received 15 May 1998; accepted 13 January 1999)

Abstract

Camphor chiral derivatives have proven to be very powerful chiral adjuvants in organic synthesis. The absolute molecular configuration of the title compound, $C_{15}H_{22}O_3$, has been determined due to the chiral

character of the (1R)-(+)-camphor. An infinite onedimensional hydrogen-bonding chain along the [010] direction [O···O 2.747 (3) Å] and an intramolecular hydrogen bond $[O \cdots O 2.770(3) Å]$ have been found.

Comment

Due to their great structural variety and availability, terpenes, as the readily available (1R)-(+)-camphor and its derivatives, might be used as a natural source for the synthesis of chiral compounds (Oppolzer, 1987). Much effort has gone into seeking simple and efficient synthesis routes to inexpensive chiral auxiliaries (Vasconcellos et al., 1991, 1992; Cabral et al., 1996; Costa et al., 1997; Dumas et al., 1997; Almquist et al., 1997). This effort has resulted in the synthesis of new 1,3-diols (Mellão & Vasconcellos, 1996; Vasconcellos et al., 1998). In order to improve the study of new chiral tridentate ligand systems, the title compound, (I), was synthesized from (1R)-(+)-camphor (Vasconcellos et al., 1998) and its crystal structure determined.

The title compound (Fig. 1) adopts a conformation in which the angle between the least-squares plane through C2-C6-C5-C3 of the bicyclic ring [5.25(1)x - 3.68(2)y - 8.68(1)z = 2.62(2); r.m.s. deviation = 0.02 Å] and the least-squares plane of the furan ring [-0.22(1)x + 0.65(2)y + 11.06(1)z = 1.25(1);r.m.s. deviation = 0.004 Å] is $50.7 (1)^\circ$; the key torsion angles are given in Table 1. The bond distances and angles are within the normally expected ranges; the bond lengths in the furan ring show some π -bond character.

In the title compound, an intermolecular $O1 \cdots O2^{i}$ hydrogen bond [2.747 (3) Å; symmetry code: (i) 2-x, $\frac{1}{2}$ + y, -z] forms a one-dimensional infinite zigzag chain along the [010] direction, similar to the hydrogenbonding packing for (1R)-(+)-camphor semicarbazone (Robinson et al., 1994). The intramolecular $O1 \cdots O2$ hydrogen bond [2.770(3)Å] forms a pseudo-sixmembered ring. The geometric hydrogen-bonding parameters are given in Table 2.

Experimental

Details of the synthesis of (I) have been published elsewhere (Vasconcellos et al., 1998). Single crystals suitable for X-ray analysis were obtained by slow evaporation from a hexane solution.

Crystal data

 $C_{15}H_{22}O_3$ $M_r = 250.33$ Monoclinic $P2_1$ a = 7.581(1) Å b = 8.663(1) Å c = 11.475(1) Å $\beta = 106.44(1)^{\circ}$ V = 722.8(1) Å³ Z = 2 $D_x = 1.150 \text{ Mg m}^{-3}$ D_m not measured

Data collection

 $\omega/2\theta$ scans

diffractometer

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 19 reflections $\theta=9.81{-}18.59^\circ$ $\mu = 0.079 \text{ mm}^{-1}$ T = 293 (2) KPrism 0.15 \times 0.10 \times 0.08 mm Colourless

Enraf-Nonius CAD-4 $R_{\rm int} = 0.013$ $\theta_{\rm max} = 28.97^{\circ}$ $h = -9 \rightarrow 10$ Absorption correction: none $k = 0 \rightarrow 11$ 1934 measured reflections $l = -15 \rightarrow 0$ 1859 independent reflections 3 standard reflections 966 reflections with frequency: 120 min

Refinement

 $I > 2\sigma(I)$

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.122$ S = 0.9051859 reflections 163 parameters H atoms: see below $w = 1/[\sigma^2(F_o^2) + (0.0616P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\min} = -0.19 \text{ e} \text{ Å}^{-3}$

intensity decay: <1% Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C) Absolute structure: correct enantiomer chosen on the basis of the known

absolute configuration of the (1R)-(+)-camphor used in the synthesis

Table 1. Selected torsion angles (°)

C4—C3—C3′—O2	-177.4 (3)	O2-C3'-C11-C12	-96.7 (5)
C2-C3-C3′-O2	61.4 (3)	C3-C3'-C11-C12	142.5 (4)
C4-C3-C3'-C11	-57.8 (4)	O2-C3'-C11-O3	83.3 (3)
C2-C3-C3'-C11	-179.0 (3)	C3-C3'-C11-O3	-37.6 (4)

Table 2. Hydrogen-bonding geometry (Å, °)

D—H···A	<i>D</i> H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	$D = H \cdot \cdot \cdot A$
O2—HO2···O1	0.86	2.14	2.770(3)	130
O1-HO1···O2 ⁱ	0.88	1.88	2.747 (3)	171
Symmetry code: (i)	$2 - x, \frac{1}{2} + y,$	-z.		

All H atoms have been placed in calculated positions, except for the hydroxyl H atoms which were located from a difference Fourier map. All H atoms were refined using a riding model with U equal to $1.2U_{eq}$ of the parent atom, except for methyl groups ($1.5U_{eq}$). The range of idealized C—H bond distances is 0.93–0.98 Å.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: XCAD4 (Harms, 1997). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP and XPMA (Zsolnai, 1994). Software used to prepare material for publication: SHELXL93.

The authors want to thank FINEP, CNPq FAPESP, FUJB and FAPERJ (Brazilian agencies) for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1146). Services for accessing these data are described at the back of the journal.

References

- Almquist, F., Torstensson, L., Gudmundsson, A. & Frejd, T. (1997). Angew. Chem. Int. Ed. Engl. 36, 376–377.
- Cabral, L. M., Costa, P. R. R., Vasconcellos, M. L. A. A., Barreiro, E. J. & Castro, R. N. (1996). Synth. Commun. 26, 3671-3676.
- Costa, P. R. R., Cabral, L. M., Alencar, K., Schmidt, L. L. & Vasconcellos, M. L. A. A. (1997). *Tetrahedron Lett.* 38, 7021–7024.
- Dumas, F., Alencar, K., Mahuteau, J., Barbero, M. J. L., Miet, C., Gérard, F., Vasconcellos, M. L. A. A. & Costa, P. R. R. (1997). *Tetrahedron Asymmetry*, 8, 579-583.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. (1997). XCAD4. Program for the Lp Correction of CAD-4 Diffractometer Data. University of Marburg, Germany.
- Mellão, M. L. & Vasconcellos, M. L. A. A. (1996). Tetrahedron Asymmetry, 7, 1607-1610.
- Oppolzer, W. (1987). Tetrahedron, 43, 1969-2004.
- Robinson, P. D., Meyers, C. Y. & Kolb, V. M. (1994). Acta Cryst. C50, 732-734.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Vasconcellos, M. L. A. A., d'Angelo, J., Desmaele, D., Costa, P. R. R. & Potin, D. (1991). Tetrahedron Asymmetry, 2, 353–356.
- Vasconcellos, M. L. A. A., Desmaele, D., Costa, P. R. R. & d'Angelo, J. (1992). *Tetrahedron Lett.* 33, 4921–4922.
- Vasconcellos, M. L. A. A., Mellão, M. L., Barreiros, U. G., Branco, M. C., Gambardella, M. T. P., Ramos, O. F. & Ribeiro, M. (1998). Synth. Commun. 28, 4077–4085.
- Zsolnai, L. (1994). XPMA and ZORTEP. Molecular Geometry and Graphics Programs. University of Heidelberg, Germany.

Acta Cryst. (1999). C55, 1297-1299

N-Cyclohexyl-6 α ,7 β -dihydroxyvouacapan-17 β -carboxamide†

Marcelo Cardoso Branco,^{*a*} Maria Teresa do P. Gambardella,^{*a*} Silvana Guilardi Ruggiero,^{*b*} Celia Regina A. Maltha,^{*c*} Guglielmo Marconi Stefani^{*c*} and Dorila Pilo-Veloso^{*c*}

^aInstituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, 13560.970 São Carlos SP, Brazil, ^bDepartamento de Quimica, Universidade Federal de Uberlândia, Caixa Postal 593, 38400-902 Uberlândia MG, Brazil, and ^cDepartamento de Química–ICEX, Universidade Federal de Minas Gerais, Caixa Postal 702, 31270-901 Belo Horizonte MG, Brazil. E-mail: branco@igsc.sc.usp.br

(Received 18 June 1997; accepted 25 February 1999)

Abstract

The crystal and molecular structures of the title compound (CHAD, C₂₆H₃₉NO₄), which is a synthetic derivative of 6α , 7β -dihydroxyvouacapan- 17β -oic acid (ADV) isolated from *Pterodon polygalaeflorus* Benth, have been determined. *P. polygalaeflorus* Benth is a traditional plant of Brazilian medicinal culture.

Comment

 $6\alpha,7\beta$ -Dihydroxyvouacapan-17 β -oic acid (ADV) is a natural furanditerpene extract isolated from the fruits of Sucupira Branca or Faveira (*Pterodon polygalaeflorus* Benth) as reported by Fascio *et al.* (1976). Its structure has been determined previously (Ruggiero *et al.*, 1997). This vouacapan furanditerpene exhibits both antiinflammatory and analgesic activities. In order to study structure-activity relationships of the vouacapanes, some amides derived from ADV were prepared, including $6\alpha,7\beta$ -dihydroxy-N-cyclohexylvouacapan-17 β amide (Maltha *et al.*, 1999). The crystallographic study of N-cyclohexyl- $6\alpha,7\beta$ -dihydroxyvouacapan-17 β carboxamide (CHAD) is reported here.

[†] Alternative name: *N*-cyclohexyl-1,5,5a,6,7,7a,8,9,10,11,11a,11bdodecahydro-6,7-dihydroxy-8,8,11a-trimethylphenanthro[3,2-*b*]furan-17-carboxamide.